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Abstract:
A problem that is often encountered when a new synthetic reac-
tion is developed is to determine suitable combinations of rea-
gents, co-reagents, catalysts, solvents, etc. This contribution pre-
sents general strategies for designing experiments when the ob-
jective is to explore the discrete variations defined by different
reagents, different catalysts, different solvents, etc. The concept
of principal properties is introduced, and it is shown how the
principal properties of the constituents of the reaction system
can be used for the selection of suitable test systems. Chemical
examples are provided by the following: the selection of test
solvents in the reduction of an enamine; the selection of com-
binations of Lewis acids and amines in the synthesis of benza-
mides; the selection of ketone substrates, amines, and solvents
in the Willgerodt- Kindler reaction; and the selection of ketone
substrates, Lewis acid catalysts, and solvents for analysing the
regioselectivity in the Fischer indole synthesis with dissymmetric
ketones.

Introduction
Organic process chemistry is a challenging field of syn-

thetic chemistry. It is an experimental science, and its objec-
tive is to furnish the chemist with simple and convenient
methods for the construction of the desired target molecules
from simple and easily available starting materials. All
knowledge in synthetic chemistry is based on inferences from
experimental observations. To develop new methods or to
improve existing methods, it is therefore of tremendous im-
portance that the experiments carried out have been designed
in a proper manner. Hence, the concept of experimental
design is vital to the organic process chemistry. This paper
highlights some aspects of the design of experiments in
synthetic chemistry when the objective is to determine which
combination of substrate, reagent(s), co-reagent(s), catalyst,
solvent, etc. will afford the most promising result and thus
merit further exploration with respect to the adjustment of
the detailed settings of the experimental conditions.

Problem Description
The Reaction Space.The essential feature of the problem

can be described using thereaction spacedepicted in Figure
1. Theaxesof the reaction space defineVariations in the

nature of the different constituents of the reaction system
(substrate, reagent, co-reagent, catalyst, solVent, etc.) The
entire reaction space is defined by the union of all possible
combinations of these constituents.

An experimental design for exploring the reaction space
defines a selection of test systems that covers the space as
efficiently as possible. How such selections should be made
is, of course, dependent onwhichquestions we pose to our
experimental system:

(1) Can the reaction be used for the conversion of all
substrates containing the necessary functional group?

(2) Is the reaction sensitive to the nature of the solvent?
(3) Is there a combination of catalyst and solvent that can

afford a selective transformation?
(4) Which properties of substrates, reagent(s), catalyst-

(s), solvent(s), etc. are critical?
(5) Whyare they important?
(6) How do the properties of the reactants exert their

influence?
(7) Which combination of reagent, catalyst, and solvent

gives the best result?
To permit a systematic search of the reaction space, we

must quantify the “axes”. This is accomplished by the
principal propertiesof the classes of the constituents in the
reaction space. A thorough discussion of the concept of
principal properties and how principal properties can be used
for exploring discrete variation is given in ref 2. A brief
outline is given below.
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Figure 1. The reaction space.
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Principal Properties and the Reaction Space
When a molecule takes part in a chemical reaction or

when it interacts with its surroundings, the properties at the
molecular level determine the outcome. However, such
intrinsic properties cannot be measured directly. What can
be obtained are measures of macroscopic properties that can
be linked to intrinsic properties by some physical-chemical
model. For example,13C NMR shifts of different carbons in
a molecule can be used to estimate the electron densities at
these carbons; UV transitions can be used to estimate energy
differences between the frontier orbitals. Some intrinsic
properties can, of course, be estimated through quantum
chemical modelling. Any chemical compound can be char-
acterised by a very large number of measurable or comput-
able property variables,obserVables. This means that we can
collect observables for each “dimension” of the reaction
space. The worst thing to do in this situation is to use com-
mercially available software to generate a very large number
of characterising variables and then use, for example, genetic
algorithms or simulated annealing to select a few of them
for modelling purposes with some criteria of model fit to
justify the selection. We fully agree with the statement by
Wold3 that we should avoid large data sets and megavariate
problems by designing our own data sets. What should be
done is to analyse the chemical problem and then select
descriptorsthat we know, believe, or suspect can pick up
those molecular properties that will exert an influence on
the reaction. Which descriptor to choose is therefore de-
pendent on the chemical problem at hand, and there is not a
universally valid set of descriptors that can always be used.
If, for instance, we believe that the nucleophilic properties
are critical, we should select descriptors related to this, for
example,refractiVe index, frontier orbital energy, ionisation
potential, donor number, pKB, proton affinity, ..., etc.

In short, molecules can be characterised by their descrip-
tors, and the descriptors can likely be assumed to be
observable manifestations of intrinsic molecular properties.
In several respects the members of the classes of constituents
defining the “axes” of the reaction space can be assumed to
be similar. For example, if a reaction is to be developed with
ketones as substrates, the class of ketones defines the set of
possible substrates. They have the same functional group and
are in this respect similar. However, variations of the side
chains make the various ketones slightly different with
respect to their properties. Assuming that the descriptors can
be used as probes of the intrinsic molecular properties, we
can analyse the intrinsic properties by analysing the descrip-
tors. Observable properties that depend on thesameintrinsic
property, can be assumed to be more or less correlated to
each other. We can also assume that observable properties
that depend ondifferent intrinsic properties will not be
strongly correlated. An analysis that takes these assumptions
into account can be carried out by principal component
analysis of the observed variation of the descriptors over a
set of compounds. Assume that each compound has been
characterised by a set ofk descriptors [q1, q2, ..., qk]. The
set of n compounds will then define ann × k descriptor

matrixQ. For convenience, assume also thatQ then has been
transformed toX by mean centring each variables and scaling
each variable to unit variance. Assume also that the descrip-
tors have been transformed in a chemically meaningful way
prior to centring and scaling. For example, UV transitions
are better expressed as the reciprocal of the wavelength since
this entity is proportional to energy. The principal component
model can be written as

whereT ) [t1, t2, ..., tA] is the score matrix defined by the
eigenvectorst i (in ) 1,...,A) of the correlation matrixXXT;
the matrixPT is the transpose of the loading matrix defined
by the eigenvectorspi (i ) 1,..., A) of the variance-
covariance matrixXTX. A matrix of residuals always occurs
when the number of components,A, included in the model
is less than the number of original descriptor variables.

The number if significant components,A, can be deter-
mined by cross-validation.4 The principal component analysis
constitutes a projection of then object points in thek-dimen-
sional descriptor space onto anA-dimensional hyperplane
spanned by the eigenvectors,pi. The elementstij of the score
vectors,t, are orthogonal projections of the objectj on the
eigenvectorpi. The principal component model describes the
systematic variation of the properties over the set of com-
pounds. The nonsystematic variation is collected in the resid-
ual matrixE. The benefit of this procedure is that the number
of variables we need to consider for taking thesystematic
Variation into account is less than the number of original de-
scriptors. We use the termprincipal propertiesto define the
correlative pattern of the original descriptors as portrayed
by the eigenvectors of property matrices. As the eigenvectors
are orthogonal, we can assume that they portray different
intrinsic properties. We can then use the eigenvectors to de-
fine theaxesof the reaction space and the score values,tij,
to quantify the variation along these axes. A plot of the score
vectors against each other, e.g.t1 vs t2, will display the scatter
of the object points projected onto the first two eigenvectors.
Objects that are close to each other in thek-dimensional
descriptor space will be projected close to each other in the
score plot. Conversely, objects that are dissimilar to each
other and therefore located far from each other in the descrip-
tor space will be projected far from each other in the score
plot. When there are only a few dimensions of the reaction
space to consider, a selection of test candidates for experi-
ments can be made by a visual inspection of the correspond-
ing score plots.

Exploring the Reaction Space
Few Dimensions To Explore.The first example of this

technique as a tool for selecting test items in organic synthetic
chemistry was presented in a paper on the selection of
solvents in organic synthesis.5 Analyses of solvent properties
by principal component analysis and factor analysis had
previously been described,6 but the use of such methods in
conjunction with screening designs in organic synthesis was

(3) Wold, S.; Berglund, A.; Kettaneh, N.J. Chemom.2002,16, 377.
(4) Wold, S.Technometrics1978,20, 397.
(5) Carlson, R.; Lundstedt, T.; Albano, C.Acta Chem. Scand.1985,B 39,79.
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not known when ref 5 was published. Different design
strategies were discussed. If the problem is to determine
wether the solvent properties influence the result, a selection
of solvents that are projected at the periphery of the score
plot should be selected. This ensures a maximum spread in
the properties of the selected solvents. Today, in the era of
combinatorial chemistry, such a design would be called a
diVersity design.If the problem is to determine whether there
is a gradual change in the performance of the reaction that
can be attributed to the properties of the solvent, a selection
of test candidates that are uniformly distributed in the score
plot should be made. In combinatorial language, this corre-
sponds to agrid search. It was also discussed how a
D-optimal design can be used for the selection of test
candidates. In retrospect, this paper was indeed prophetic.

Example: Reduction of an Enamine.It was found that
D-camphor could be converted to the corresponding enamines
in high yields by adding camphor to a TiCl4-amine
complex.7 These enamines were almost quantitatively con-
verted to the saturated bornylamines when they were treated
with 98% formic acid. The reaction was highly stereoselec-
tive and theendoisomer was the dominating product. The
following endo/exoratios were observed:N-bornylmorpho-
line (93/7),N-bornylpiperidine (92/8), N-bornylpyrrolidine
(85/15). The reactions were carried out by adding a sto-
ichiometric amount of formic acid to the neat enamine at
100°C. The question was whether the stereoselectivity could
be improved by running the reaction in solution, and in that
case, which solvent should be used? The pyrrolidine enamine
was used as model substrate since this compound yielded
the poorest stereoselectivity using the neat enamine. The
following test solvents were selected from the principal
property score plot so that they afforded a maximum spread
(diversity) design. The following solvents were chosen (the
numbers refer to the score plot in Figure 2): formamide (2),

sulfolane (28), 1,2-dichlorobenzene (57), cyclohexane (81),
tetrahydrofuran (63), methoxyethanol (8), methanol (4),
2-methyl-2-butanol (40), and diethylene glycol (6).

When the reaction was run in these solvents (one equiva-
lent of formic acid, 100°C or reflux), the amounts of theendo
isomer were in the range 85-87%, and no improvement of the
selectivity was observed. Since the selected solvents covered
a very large variation of the solvent properties, it was con-
cluded that the probability of finding a solvent in which the re-
action is stereoselective must be very low. Instead, a method
for isolating theendoisomer by recrystallisation of the hydro-

(6) (a) Bohle, M.; Kollecker, W.; Martin, D.Z. Chem.1977, 17, 161. (b)
Chastrette, M.Tetrahedron1979,35, 1441. (c) Cramer, R., III.J. Am. Chem.
Soc.1980,102, 1837, 1849. (d) Elguero, J.; Fruchier, A.Anal. Quim. Ser.
C. 1983,79, 72. (e) Svoboda, P.; Pytela, O.; Vecera, M.Collect. Czech.
Chem. Commun.1983,48, 3287.

(7) Carlson, R.; Nilsson, A° . Acta Chem. Scand.1985,B 39,181.
(8) Nordahl, A° .; Carlson, R.Acta Chem. Scand.1988,B 42, 28.

Figure 2. Selected solvents in the enamine reduction study.

Figure 3. (Top) Selected amines: benzylamine (78), buty-
lamine (82), morpholine (115), dipropylamine (106). (Bottom)
Selected Lewis acids: BF3 (44), TiCl4 (3), AlCl3 (17), ZnI2 (99),
ZnCl2 (15).
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chloride salt was developed. The solvent for this was also
determined from the principal properties, but this is another
story.

Example: Lewis Acid-Mediated Synthesis of Benza-
mides.This example is taken from ref 8. Carboxamides can
be prepared by a large number of methods. Most often, the
carboxylic acid is converted to a more reactive intermediate,
e.g. the acid chloride which then is allowed to react with an
amine. For practical reasons it is preferable to form the
reactive intermediate in situ. A carboxamide-forming reaction
of this type attracted our interest in the context of our studies
on Lewis acid-catalyzed reactions, viz. the reaction between
carboxylic acids and primary or secondary amines catalysed
by Lewis acids and tertiary amines. Scattered examples of
this reaction had been found in the literature, but no
systematic study had been undertaken.

Benzoic acid was used as model substrate. Triethylamine
was used as the tertiary amine. Four amines and five Lewis
acid to be tested were selected from the score plots to ensure
a sufficient spread in their properties, see Figure 3. Signifi-
cant experimental variables were identified from a two-level
fractional factorial design. The significant variables were then
further investigated by an augmented two-level design to also
determine significant interaction effects. We will not go into
details on the experimental variables. We will focus on the
results obtained in the study of the reaction space.

Table 1 summarises the yields obtained with the selected
reaction systems.

The results in Table 1 show that boron trifluoride afforded
good yields, and also the carboxamide with all four amines.
Aluminum trichloride afforded lower yields than boron tri-
fluoride. Titanium tetrachloride afforded high yield only with
the secondary amines. The zinc halides were useless. There
was a striking difference in the reaction times required for
obtaining the maximum yield in preparative scale runs as
shown in Table 2.

This study shows that a selection of reagents by their prin-
cipal properties made it possible to identify suitable combin-

ations of reactants and reagents for preparative-scale syn-
thesis of benzamides.

Several Dimensions of the Reaction Space To Explore.
In the general case, the complexity of the problem increases,
however, when the number of dimensions of the reaction
space increases. One possibility to cope with the problem is
to use a two-level fractional factorial design to explore the
reaction space. However, this yields a selection of test items
that are sparsely distributed in the reactions space, and such
designs are only useful for screening purposes. A fractional
factorial design for exploring the reaction space is shown
below with an example of the Willgerodt-Kindler reaction.

For fine-tuning the reaction system it will, however, be
necessary to select test items in such a way that it is possible
to evaluate if there are gradual changes in the outcome of
the reaction and if these changes can be traced back to the
properties of the constituents of the reaction system. For this,
the test items for each dimension of the reaction space should
be selected in such a way that the test points form a uniformly
distributed grid of points in the corresponding score plots.
A brute force example with the Fischer indole syntheis is
shown below, and it is then shown that the number of
selected test items can be considerably reduced by using a
statistical design based upon singular value decompositions
of candidate model matrices.

Fractional Factorial Design for Screening the Reaction
Space.These principles were presented in the context of the
Willgerodt-Kindler reaction,9 see Scheme 3. The question
posed to the reaction system was whether it would have been
possible to assess the scope and limitation of the Willgerodt-
Kindler reaction from a small number of experiments.

(9) Carlson, R.; Lundstedt, T.; Shabana, R.Acta Chem. Scand.1986,B 40,
694.

Table 1. Yields obtained with different combinations of amines and Lewis acids

amine Lewis Acid yield of carboxamide/% amine Lewis Acid yield of carboxamide/%

benzylamine BF3-etherate 86 morpholine BF3-etherate 91
TiCl4 15 TiCl4 81
AlCl3 63 AlCl3 72
ZnI2 0 ZnI2 0
ZnCl2 0 ZnCl2 0

butylamine BF3-etherate 81 dipropylamine BF3-etherate 45
TiCl4 19 TiCl4 44
AlCl3 68 AlCl3 8
ZnI2 trace ZnI2 0
ZnCl2 0 ZnCl2 0

Table 2. Preparative scale synthesis of benzamides

amine Lewis acid reaction time/h yield/%

benzylamine BF3-etherate 96 89
butylamine BF3-etherate 96 83
morpholine TiCl4 10 86
dipropylamine TiCl4 10 86

Scheme 1

Scheme 2
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The perturbations to consider were: (a) the nature of the
substrate as described by the properties of the substituents,
Y, (b) the nature of the amine co-reagent, (c) the nature of
the solvent. For each of these, two principal components were
sufficient to describe the systematic variations. Thus, the
reaction space was six-dimensional, each dimension was
described by two score vectors. To span the variation, a
fractional factorial design, 26-3, was used, letting the variables
two by two define selections from different quadrants of the
score plots, see Figure 4.

The selections from the score plots are summarised in
Table 3 and the final design is shown in Table 4. The
optimum experimental conditions for each selected system
were determined by response surface methodology. This was
actually the very first statistically designed combinatorial
library in synthetic organic chemistry.

For each selected system, the experimental conditions
giving the maximum yield were determined by response
surface techniques. From these results, it was then shown
that a PLS model could be used to predict the optimum
conditions for new reaction systems.

The conclusion from this study was that a small number
of suitably selected test items can reveal the general scope
of synthetic reactions. These principles have later successfully
been used in medicinal chemistry for designing combinatorial
libraries in the context of QSAR modelling.10

Brute Force and Singular Value Decomposition
To understand these principles we shall look at the under-

lying principles and discuss modelling of the reaction space.
Modelling. The outcome of a chemical reaction is

determined by the energy changes during the reaction. The
course of the reaction can be described as a movement on a
potential energy surface, from one energy minimum repre-
senting the starting materials to another energy minimum
representing the products. The energy difference between
the minima determines the position of chemical equilibria.
The energy barrier to surmount going from one minimum
to another, the activation energy, determines the rate of the
reaction. How deep the minima are, how high the energy
barriers are will depend on the detailed experimental condi-
tions. This holds both for variations in the reaction space
and for variations in the experimental space. For example,
modelling how changes of the reaction systems influence
rates and equilibria, i.e. how the trajectories over the potential
energy surface differ in shape, forms the basis of all linear
free energy relationships.10

Two responses are of general interest in organic synthesis,
the yield and the selectivity.

The yield is actually the integral of the reaction rate over
time, i.e.

The selectivity can be described as the ratio of the rates of
the reactions forming the different products, A andB, as

If the reaction is rapidly reversible, the selectivity is
determined by the equilibrium constant,Keg.

(10) See, for instance: Sjöström, M.; Eriksson, L. Application of Statistical
Experimental Design and PLS Modeling in QSAR. InChemometric
Methods in Molecular Design; vand der Waterbeemb, H.; Ed.; VCH:
Weinheim, 1995.

Scheme 3

Table 3. Selected items from the score plots in the
Willgerodt-Kindler study

assignment

items zi zj substituent Y amine solvent

1 - - Cl- isopropylamine benzene
2 + - H- morpholine ethanol
3 - + MeO- diethylamine quinoline
4 + + PhO- dipentylamine triethylene

glycol (TEG)

Figure 4. Selection of test items by a fractional factorial design.

Table 4. Selected reaction systems in the
Willgerodt-Kindler study

reaction system
substituent amine solvent

1 Cl- Et2NH TEG
2 H- i-PrNH2 quinoline
3 MeO- i-PrNH2 EtOH
4 PhO- Et2NH benzene
5 Cl- Pe2NH benzene
6 H- morpholine EtOH
7 MeO- morpholine quinoline
8 PhO- Pe2NH TEG

yield ) ∫rate dt

selectivity)
rate (A)

rate (B)

Keg ) [A]/[B]
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For exploring the experimental conditions it is reasonable
to assume that the outcome of the reaction,y, is dependent
on the experimental conditions and that we can assume that
there is some kind of functional relation,f, between them, i.e.

The experimental conditions are defined by the settings of
the experimental variables,x1, x2, ...,xk, and we can assume
the following functional relation:

For exploring the reaction space, it is reasonable to assume
that the outcome,y, of a reaction is dependent on the
properties of the reaction system and that we also in this
case can assume some functional relation between the
properties of the system and the outcome, that is

Assume that the reaction space has been defined by the
principal properties of the constituents. We can therefore
assume a functional relation betweeny and the principal
properties:

If xi denotes the score value of a principal property, we can
assume the following functional relationship:

In general, we do not know an analytical expression off,
and it will be difficult to derive it from chemical theory.
The functionf is determined by the shape of the potential
energy surface and how this shape is altered by experimental
perturbations. Provided that the experimental perturbations
are not too large so that a totally different reaction mechanism
begins to operate, we can assume a smooth change of the
shape of the potential energy surface as a result of the
experimental variations. We can therefore assume thatf is
smooth and several times differentiable. Under these condi-
tions, we can obtain an approximation off by a Taylor
expansion.

Let 0 be the centre point of the domain to be explored,x1

) x2 ) ... ) xk ) 0. A Taylor expansion around the centre
point will be:

In most cases, a sufficiently good approximation is obtained
if the Taylor polynomial is truncated after the inclusion of
the second order terms. The truncated Taylor expansion is
more conveniently written as,

The error term,e, contains contributions from the omitted
terms of the Taylor expansion.

Such models are often called response surface models or
response surfaces since they describe a surface in the space
spanned by{y, x1, x2, ...,xk}. The coefficients of the response
surface model describe how the settings of the experimental
variables are linked to the response. We can therefore analyse
the roles played by the variables from estimates of their
coefficients. Such estimates can be obtained from properly
designed experiments. The model is linear in the coefficients
and least-squares estimates of the coefficients,b0, b1, ..., bk,
b12, ..., bij, b11, ..., bkk, can be obtained by fitting the
polynomial to known experimental results by multiple linear
regression.

Experimental Design
From the above discussion it is seen that a fairly detailed

description of the roles played by the experimental variables
can be obtained from the response surface model. Before
designing the experiment we must therefore decide:How
detailed is the information required?

* Linear models: A model with only linear terms will
seldom give a very precise description, but such models are
very useful in screening experiments with many variables
with a view to determining which variables are important.

* Interaction models: If we include the cross-product
terms in the model, it is possible to assess interaction effects.
It is always advisable to consider possible interaction effects.

* Quadratic models:Such models can describe nonlinear
dependencies between the response and the variables. Close
to an optimum, for instance, the maximum yield, the response
surface is curved. To describe the response surface in the
near optimum region it will be necessary to take the curvature
of the surface into account. This is accomplished by the
quadratic terms.

Fischer Indole Synthesis
This example is included to show how the reaction space

can be investigated by experimental designs in the principal
properties to determine which properties are critical. A
general strategy for the construction of optimal designs is
outlined. The example is taken from results published in ref
12.

When phenylhydrazones from aldehydes and ketones
containingR-methylene groups are heated in the presence
of acid, they undergo a rearrangement and a ring closure to
form indoles. The reaction was discovered by Emil Fischer
in 188313 and has ever since been a workhorse in the field
of heterocyclic chemistry for the synthesis of indoles. An
extensive monograph over the reaction has been published.14

A problem with the Fischer indole synthesis is that regioi-
someric indoles are formed in the reaction of phenylhydra-
zones from dissymmetric ketones containingR- and R′-
methylene groups.

The Problem, the First Brute Design and Conclusion from
It. Which properties of the Fischer indolisation reaction
systems are critical for obtaining a regioselective reaction
in the reaction of phenylhydrazones from dissymmetric bis-

y ) f(experimental conditions)

y ) f(x1, x2, ...,xk)

y ) f(properties of the reaction system)

y ) f(principal properties of the reaction system)

y ) f(x1, x2, ...,xk)

y ) f(0) + ∂f(0)/∂x1 x1 + ∂f(0)/∂x2 x2 + .... + ∂f(0)/∂xk xk +

+ 1/2∂
2f(0)/∂x1∂x2 x1 x2 + ... + 1/2∂

2f(0)/∂xi∂xj xi xj + ...

+ 1/2∂
2f(0)/∂x1

2 x1
2 + .... + 1/2∂

2f(0)/∂xk
2 xk

2 +

higher-order terms

y ) â0 + â1x1 + â2x2 + ... + âkxk + â12x1x2 + .... + âijxixj +

â11x1
2 + ... + âkkxk

2 + e
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methylene ketones, see Scheme 4. Are there certain combi-
nations of Lewis acid catalysts and solvents that can give
regioselective reactions? With a view to answering these
questions, 5 ketones, 12 Lewis acids, and 10 solvents were
selected from their principle properties. The score plots are
shown in Figure 5. The selected items are summarized in
Table 5.

The number of possible combinations of these items is
600. Of these, 296 were tested at the bench. The reactions
were monitored by high-resolution gas chromatography for
48 h to ensure that the isomers were stable and did not
equilibrate. Of these, 162 systems afforded the Fischer indole
reaction; the remaining systems failed. A list of the 162
successful reaction systems is given refs 2 and 12 and is not
reproduced here.

To analyse the results, PLS modelling was used. The
regioisomeric excess, re, was used as the response variable.
The X-block contained the principal property scores of the
selected items. For the ketones theυ parameter given by
Charton15 was included to take steric effects of the side chains
into account. The X-block was expanded by including all
columns of the cross-product and the squared variables. A
three-component PLS model was significant according to
cross-validation and accounted for 87% of the variance of
the response. Analysis of the PLS weight plots afforded the
following conclusions as to which factors influence the
regioselectivity:

ketones:steric bulk of the side chain
solVent:polarisabilty and lipophilic properties
Lewis acid:none
The chemical conclusion drawn was that to increase the

selectivity, the effects of steric congestion should be ampli-
fied. One way to accomplish this would be to use an acid
bound to a solid matrix. To make a long story short,
regioselective indolisation can be obtained with zeolites as
acid catalysts, and this afforded a new and highly efficient
procedure for the reaction.16

General Strategy for Selection of Test Systems.A fairly
large number of experimental runs were used in the Fischer
study shown above. The question was whether it would have
been possible to reach the same conclusions from a consider-
ably smaller set of test system. The answer isyes, and such
a strategy is outlined below.

The basis of the strategy is the principal properties of the
reaction space. The first thing to do is to clearly state the

(11) See, for example: Hammett, L. P.Physical Organic Chemistry, 2nd ed.;
McGraw-Hill: New York, 1970.

(12) Prochazka, M. P.; Carlson, R.Acta Chem. Scand.1989,43, 651.
(13) Fischer, E.; Jourdan, F.Ber. Dtsch. Chem. Ges.1883,16, 2241.
(14) Robinson, B.The Fischer Indole Synthesis; Wiley: Chichester, 1982.
(15) Charton, M.Top. Curr. Chem.1982,117, 57.
(16) Prochazka, M. P.; Eklund, L.; Carlson, R.Acta Chem. Scand.1990,44,

610; Prochazka, M. P.; Eklund, L.; Carlson, R.Acta Chem. Scand.1990,
44, 614.

Scheme 4

Figure 5. Score plots used for selecting test items in the Fischer
indole synthesis study: ketones (top), Lewis acids (middle),
solvents (bottom).

Table 5. Selected items in the Fischer indole study

ketones Lewis acids solvents

3-hexanone BF3 sulfolane
2-hexanone CuCl carbon disulfide
3-undecanone ZnI2 N,N-dimethylacetamide
1-phenyl-2-butanone TiCl4 quinoline
5-methyl-3-heptanone ZnCl2 1,2-dichlorobenzene

SbCl5 dimethyl sulfoxide
PCl3 carbon tetrachloride
CuI chloroform
FeCl3 tetrahydrofuran
SiCl4 hexane
AlCl3

SnCl4
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objectives of the study and then to analyse the chemical
problem. From this analysis, determine which descriptors
should be used for determining the principal properties for
each “dimension” of the reaction space so that the relevant
intrinsic molecular properties are portrayed. Collect descrip-
tor data for sets of possible test candidates. These data sets
can contain a large number of possible test candidates.
Determine the principal properties. From the score plots for
each dimension of the reaction space make a selection of a
subset of chemically relevant test items so that the interesting
range of variation of the properties is spanned by the selected
candidates.

The next step is to determine how detailed the information
is required and then to determine the type of model that
should be used:

* a linear model
* an interaction model
* a full quadratic model
Construct the full combinatorial library matrix containing

all combinations of the selected test items. This will actually
be a full factorial design in the discrete settings. Then,
convert the combinatorial library into the matrix,D, contain-
ing the corresponding principal property scores as variables.

Construction of the Design.Construct the candidate model
matrix, C, by expandingD with columns for the cross-
products and the squared variables included in the model.
The space spanned by the columns inC is called thereaction
model space. FromC, experiments are then selected to define
the model matrixX so that the experiments selected span
the row space ofC, which is equivalent to saying that the
experiments selected should span the reaction model space.
How this can be accomplished in shown below. A complete
treatment with all mathematical details is given in ref 16.
Here follows only a brief account of the general prin-
ciples.

Before we treat the Fischer indole synthesis, we will show
the principles using a simpler example, viz. the selection of
test solvents. Assume that we wish to determine how the
properties of the solvent influence the outcome,y, of a
reaction and that a quadratic model will be necessary.
Assume also that the properties of the solvents are adequately
described by their principal properties. We will use the
solvent data given in ref 2. This data set contains 103 solvents
characterised by nine property descriptors, and it gives two
significant principal components. The score vectors,t1 and
t2 display the between-solvent variation in the principal
property space. The score valuest1r andt2r are the coordinates
of solventr when the descriptors are projected onto the two
first principal components. A quadratic model that relates
the outcome of the experiment to the principal properties
will therefore be

The response model can be written

where X is the model matrix,â is the vector of model
coefficients to be estimated, ande is a vector of errors. The

best estimateb of the coefficient vectorâ in the least-squares
sense

whereX† is the pseudo-inverse ofX as given bysingular
Value decomposition, SVD. IfX has full column rank, the
pseudo-inverse simplifies to

which yields the ordinary least-squares estimate ofb. It is,
of course, possible to fit the model by PLS. A good design
for fitting the model by the pseudo-inverse will also be a
good design for fitting the model by PLS. The problem is
now reduced to find test solvents that defineX so that the
coefficients can be estimated. The model matrixX is obtained
by the following procedure.

After the expansion ofD to C by including a column of
ones (corresponds to the constant term in the model),
columns for the cross-product and the squared variables, the
(103× 6) candidate model matrix,C, is obtained. The next
step is to factorC by a singular value decomposition

whereU ) [u1 u2 ... u6] is defined by the eigenvectorsui of
the correlation matrixCCT; VT is the transpose ofV ) [v1

v2 ... v6] which is defined by the eigenvectors of the
variance-covariance matrixCTC, andS is a diagonal matrix
in which the diagonal elements,σ1,, ..., σ6, are the square
roots of the eigenvalues ofCCT (or CTC, they are equal).
The next step is to find the row vectorcm, in C that is most
parallel to the first singular vectorv1, i.e the vector
corresponding to the largest singular value. It is not likely
that we can find a solvent for which the corresponding row
in C is perfectly parallel tov1, but the best choice would be
the row for which the absolute value of the scalar product
|cm‚v1| is as large as possible. The corresponding solvent
vector points in the direction showing the largest variation
in the model space. The first selected solvent by these
principles is N-methylacetamide, a highly polar aprotic
solvent. The corresponding row is added as the first row in
the designed model matrixX. To select the next solvent, we
remove fromC the properties already taken into account by
the first selected one. This produces a new matrixC′ by the
following transformation

The procedure is then repeated usingC′ as input. The second
solvent thus selected is iodobenzene, a highly polarisable,
nonpolar solvent. Removing its properties fromC′ and
repeating the procedure affords the following selection of
six solvents that span the model space:N-methylacetamide,
iodobenzene, sulfolane, pentane, methanol, and 1,1,1-trichlo-
roethane. This selection is chemically reasonable, it spans
the polarity-polarisability properties and corresponds to a
selection that could have been made by mere intuition. It is,
however, not likely that estimates of the coefficients of the
quadratic model will have a high precision when determined

y ) â0 + â1 t1 + â2 t2 + â11 t1
2 + â22 t2

2 + â12 t1 t2 + e

y ) X â + e

b ) X†y

X† ) (XTX)-1XT

C ) USVT

C′ ) C[1 - (cm
Tcm/cmcm

T)]
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from such a small selection of test solvents. One way to
increase the precision would be to make replicate runs of
the experiments, but this will not yield any new information
as to the roles played by the properties of the solvent. Instead,
we suggest another way to increase the precision of the
estimated coefficients. The confidence limits of the estimated
coefficients are proportional to 1/σi, the reciprocal of the
singular values of the model matrixX. To increase the
precision we should therefore select additional solvents from
the candidate matrixC in such a way that the smallest
singular value ofX (the model matrix of already chosen
experiments) is increased. This can be accomplished by
selecting new solvents for which the corresponding row in
C is most parallel to the singular vectorvi that corresponds
to the smallest singular valueσi of X. A full account of these
aspects is given in ref 17. By this principle, additional
solvents can be selected to improve the precision of the
estimated model parameters, and the following next six
complementary solvents are: morpholine, pyridine, 1,2-
dichloroethane,cis-decaline, 1,2-diaminoethane, and diglyme.

This was just an example to illustrate the principles. In a
real case, we should of course only include really relevant

solvents in the candidate matrix.
The SVD Algorithm and the Fischer Indole Experiments.

The question was, wether the conclusions drawn after the
experiments with 162 different reaction systems could have
been reached with fewer experiments. Singular value de-
composition of the candidate model matrix corresponding
to a full quadratic model (44 columns) and 162 rows afforded
35 distinct singular values. Hence, the model matrix does
not have a full column rank. To span the row space 35
experiments were selected by the singular vectors. These
experiments are summarised in Table 6. A PLS model was
then fitted to link the regioisomeric excess to the model
matrix. A two-component model was significant (cross-
validation) and explained (70+ 23 ) 93% of the variance
of the response,Q2 ) 0.519, and 0.416, respectively. Normal
probability plots of the PLS loading weights of theX block
clearly identified the important variables as outliers from the
noise line, Figure 6. These variables are exactly the same as
were found from the PLS model established from all of the
162 experiments.

It is interesting to see how the quality of the predictions
by the model varies when the number of included experi-
ments increases. The models were fitted using the pseudo-
inverse, and in Figure 7 the prediction error sum of square
(PRESS) for the entire data set (162 experiments) is plotted

(17) Carlson, R.; Carlson, J.; Grennberg, A.J. Chemom.2001,15, 455.
(18) Björk, A° . Numerical Methods for Least Squares Problems; SIAM:

Philadelphia, PA, 1996.

Table 6. Reaction systems in the Fischer indole study selected by the SVD algorithm

entry (Id)a ketone Lewis acid solvent reb

1 (33) 2-hexanone BF3 carbon disulfide 100.0
2 (48) 3-undecanone BF3 sulfolane 23.6
3 (28) 2-hexanone TiCl4 sulfolane 100.0
4 (27) 2-hexanone ZnI2 sulfolane 100.0
5 (98) 1-phenyl-2-butanone BF3 THF 60.0
6 (11) 3-hexanone SbCl5 carbon disulfide 54.0
7 (55) 3-undecanone BF3 carbon disulfide 21.0
8 (89) 1-phenyl-2-butanone BF3 1,2-dichlorobenzene 62.0
9 (56) 3-undecanone ZnI2 carbon disulfide 34.2
10 (52) 3-undecanone PCl3 sulfolane 31.0
11 (155) 1-phenyl-2-butanone TiCl4 hexane 56.0
12 (128) 3-hexanone CuCl carbon tetrachloride 43.2
13 (144) 2-hexanone SbCl5 THF 100.0
14 (125) 3-hexanone TiCl4 Quinoline 34.0
15 (151) 3-undecanone PCl3 hexane 32.0
16 (42) 2-hexanone AlCl3 1,2-dichlorobenzene 100.0
17 (81) 1-phenyl-2-butanone AlCl3 sulfolane 28.0
18 (93) 1-phenyl-2-butanone PCl3 1,2-dichlorobenzene 52.0
19 (34) 2-hexanone ZnI2 carbon disulfide 100.0
20 (47) 2-hexanone AlCl3 THF 98.0
21 (150) 3-undecanone ZnCl2 hexane 14.0
22 (85) 1-phenyl-2-butanone ZnCl2 carbon disulfide 70.0
23 (71) 3-undecanone TiCl4 THF 40.0
24 (104) 5-methyl-3-heptanone BF3 sulfolane 100.0
25 (99) 1-phenyl-2-butanone ZnI2 THF 88.0
26 (112) 5-methyl-3-heptanone ZnI2 carbon disulfide 100.0
27 (133) 3-hexanone BF3 chloroform 43.2
28 (115) 5-methyl-3-heptanone TiCl4 1,2-dichlorobenzene 100.0
29 (111) 5-methyl-3heptanone BF3 carbon disulfide 100.0
30 (123) 5-methyl-3-heptanone PCl3 THF 100.0
31 (129) 3-hexanone ZnI2 carbon tetrachloride 48.2
32 (6) 3-hexanone AlCl3 sulfolane 63.2
33 (124) 5-methyl-3-heptanone AlCl3 THF 100.0
34 (13) 3-hexanone AlCl3 carbon disulfide 60.4
35 (24) 3-hexanone FeCl3 THF 58.0

a The numbers within parentheses refer to the run number in the entire data set (162 runs) given in refs 2, 17.b Percent regioisomeric excess.
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vs the number of included experiments in the model matrix.
It is seen that there is a rapid drop in the prediction errors
when the maximum rank is reached (35 experiments); after
that there are only minor improvements of the predictions

by the models. Running more than ca. 40 experiments would
therefore be a waste of time.

A Note on D-Optimal Designs.It can be argued that the
design problem discussed above can be solved by first
assigning the model and then determining a D-Optimal
design by a search among the candidate experiments.
However, when we run chemical experiments, we must take
our background chemical knowledge into account and use
this in the design process. It is often the case that we know
beforehand that certain combinations of substrate, reagents,
and solvent will not work. Such combinations should
therefore be excluded from the candidate experiments. Such
truncations due to our chemical knowledge of the possible
candidates impose restrictions to the possible variation in
the reaction model space. By this, the candidate model matrix
runs the risk of being singular. In such cases, any attempt to
establish a D-Optimal design by searching combinations of
candidate experiments will fail. This problem is overcome
by the SVD algorithm.

Conclusions
The starting point of any experimental study is a clear

statement of the objectives. The next step is to identify the
problems that have to be solved before we can reach the
goal. In this process we have to use all our background
knowledge and previous experience. When the problems have
been identified, we can pose detailed questions to our
experimental systems. These questions are the starting point
for the design of experiments so that the results obtained in
these experiments are likely to provide the answers to our
questions. Multivariate models make it possible to determine
the roles played by the experimental variables and the
properties of the reaction systems. This gives clues to a better
understanding of the chemistry involved.

Statistically designed experiments, principal component
analysis, and PLS modelling are very powerful tools that
open up efficient strategies for experimental studies. Com-
mercially available software packages at low prices make
these methods readily accessible to experimenters. Hence,
there is no excuse to publish results and “new synthetic
methods” that have been obtained in poorly designed
experiments.
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Figure 6. Cumulative normal probability distributions of the
PLS X-block weights. The significant variables have weights
that appear as outliers from a normally distributed noise.

Figure 7. PRESS vs the number of experiments in the design.
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